String theory is a physical model whose fundamental building blocks are one-dimensional extended objects (strings) rather than the zero-dimensional points (particles) that were the basis of most earlier physics. For this reason, string theories are able to avoid problems associated with the presence of point-like particles in a physical theory. The term 'string theory' properly refers to both the 26-dimensional bosonic string theories and to the 10-dimensional superstring theories discovered by adding supersymmetry. Nowadays, 'string theory' usually refers to the supersymmetric variant while the earlier is given its full name, 'bosonic string theory'. Interest in string theory is driven largely by the hope that it will prove to be a theory of everything. It is one viable solution for quantum gravity, and in addition to gravity it can naturally describe interactions similar to electromagnetism and the other forces of nature. Superstring theories also include fermions, the building blocks of matter. It is not yet known whether string theory is able to describe a universe with the precise collection of forces and matter that we observe, nor how much freedom to choose those details the theory will allow.
Different Theories and Their Problems:
Bosonic String Theory: Bosonic string theory is formulated in terms of the Nambu-Goto action, a mathematical quantity which can be used to predict how strings move through space and time. By applying the ideas of quantum mechanics to the Nambu-Goto action-a procedure known as quantization-one can deduce that each string can vibrate in many different ways, and that each vibrational state appears to be a different particle. The mass the particle has, and the fashion with which it can interact, are determined by the way the string vibrates-in essence, by the "note" which the string sounds. The scale of notes, each corresponding to a different kind of particle, is termed the "spectrum" of the theory. These early models included both open strings, which have two distinct endpoints, and closed strings, where the endpoints are joined to make a complete loop. The two types of string behave in slightly different ways, yielding two spectra. Not all modern string theories use both types; some incorporate only the closed variety. However, the bosonic theory has problems. Most importantly, as the name implies, the spectrum of particles contains only bosons, particles like the photon which obey particular rules of behavior. While bosons are a critical ingredient in the Universe, they are certainly not its only constituents. Investigating how a string theory may include fermions in its spectrum led to supersymmetry, a mathematical relation between bosons and fermions which is now an independent area of study. String theories which include fermionic vibrations are now known as superstring theories; several different kinds have been described.
M Theory: In the 1990s, Edward Witten and others found strong evidence that the different superstring theories were different limits of an unknown 11-dimensional theory called M-theory. These discoveries sparked the second superstring revolution. Many recent developments in the field relate to D-branes, objects which physicists discovered must also be included in any theory which includes open strings of the super string theory.
Multiple Dimensions?
One intriguing feature of string theory is that it predicts the number of dimensions which the universe should possess. Nothing in Maxwell's theory of electromagnetism or Einstein's theory of relativity makes this kind of prediction; these theories require physicists to insert the number of dimensions "by hand". Instead, string theory allows one to compute the number of space-time dimensions from first principles. Technically, this happens because Lorentz invariance can only be satisfied in a certain number of dimensions. This is roughly like saying that if we measure the distance between two points, then rotate our observer by some angle and measure again, the observed distance only stays the same if the universe has a particular number of dimensions. The only problem is that when the calculation is done, the universe's dimensionality is not four as one may expect (three axes of space and one of time), but twenty-six. More precisely, bosonic string theories are 26-dimensional, while superstring and M-theories turn out to involve 10 or 11 dimensions.

Back to Table of Contents